A quasi-static boundary value problem in multi-surface elastoplasticity: Part 1—Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quasi-Static Boundary Value Problem in Multi-Surface Elastoplasticity: Part 2 – Numerical Solution

Multi-yield elastoplasticity models a material with more than one plastic state and hence allows for refined approximation of irreversible deformations. Aspects of the mathematical modeling and a proof of unique existence of weak solutions can be found in part I of this paper [BCV04]. In this part II we establish a canonical time-space discretization of the evolution problem and present various...

متن کامل

A Quasi-Static Boundary Value Problem in Multi-Surface Elastoplasticity: Part 1 – Analysis

The quasi-static evolution of an elastoplastic body with a multi-surface constitutive law of linear kinematic hardening type allows the modeling of curved stress-strain relations. It generalizes classical small-strain elastoplasticity from one to various plastic phases. This paper presents the mathematical models and proves existence and uniqueness of the solution of the corresponding initial-b...

متن کامل

Boundary Observability in the Quasi-Static Thermoelastic Contact Problem

Abstract We study the observability properties of a nonlinear parabolic system that models the temperature evolution of a thermoelastic rod that may come into contact with a rigid obstacle. Basically the system dynamics are described by a one-dimensional nonlocal partial differential equation of parabolic type with a nonlinear and nonlocal boundary condition. For a specified nonlocal observatio...

متن کامل

An Eulerian projection method for quasi-static elastoplasticity

Awell-established numerical approach to solve the Navier–Stokes equations for incompressible žuids is Chorin’s projection method [1], whereby the žuid velocity is explicitly updated, and then an elliptic problem for the pressure is solved, which is used to orthogonally project the velocity eld to maintain the incompressibility constraint. In this paper, we develop a mathematical correspondence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in the Applied Sciences

سال: 2004

ISSN: 0170-4214,1099-1476

DOI: 10.1002/mma.524